OVERVIEW OF $\$ 15.1$
Let's begin by revisiting a bit of SVC.
If yon want the area under $y=f(x)$:
(1)

$$
\text { "Ares }=f(x) d x
$$

Total area = sold them up and compote

$$
\int_{a}^{b} f(x) d x
$$

Also, you perhaps. learned how to compute volumes of solids of revolution!

(2)

$$
=\pi\left(x^{2}\right)^{2} d x
$$

Total volume add them up

$$
\int_{1}^{2} \pi x^{4} d x
$$

x is a constant along each slice!! So total vol of add the slices

$$
\int_{1}^{3}\left(\int_{1}^{2}(x+y) d y\right) d x
$$

This is a combination of ioleas from
(1) and (2) on prev page.

Namely (2) for the outer integral, (1) for
inner.
Let's compute:

$$
\begin{aligned}
& \int_{1}^{3} \int_{1}^{2}(x+y) d y d x=\left.\int_{1}^{3}\left(x y+\frac{1}{2} y^{2}\right)\right|_{y=1} ^{2} d x \\
& =\int_{1}^{3}(2 x+2)-\left(x+\frac{1}{2}\right) d x \\
& =\int_{1}^{3}\left(x+\frac{3}{2}\right) d x \\
& =\left.\left(\frac{1}{2} x^{2}+\frac{3}{2} x\right)\right|_{x=1} ^{3}=\left(\frac{9}{2}+\frac{9}{2}\right)-\left(\frac{1}{2}+\frac{3}{2}\right) \\
& =7
\end{aligned}
$$

as how the disk slices in (2) depend only on x.

Total volume ind up the slices

$$
\int_{1}^{2}\left(\int_{1}^{3}(x+y) d x\right) d y
$$

COMPARISON

$$
\begin{aligned}
& \int_{1}^{3} \int_{1}^{2}(x+y) d y d x \\
& =1 \quad \text { (bycalis done } \quad \text { previons/y) } \\
& =7
\end{aligned}
$$

This agreement $(7=7)$ is a manifestation of Fubini's Thm (15.1.10).
"Fubini is to integration as
Clairant is to alfferentiation."

$$
\begin{aligned}
& \int_{1}^{2} \int_{1}^{3}(x+y) d x d y \\
= & \left.\int_{1}^{2}\left(\frac{1}{2} x^{2}+x y\right)\right|_{x=1} ^{3} d y \\
= & \int_{1}^{2}\left(\frac{9}{2}+3 y\right)-\left(\frac{1}{2}+y\right) d y \\
= & \int_{1}^{2} 4+2 y d y=\left.\left(4 y+y^{2}\right)\right|_{y=1} ^{2} \\
= & (8+4)-(4+1)=7
\end{aligned}
$$

Intuitive explanation of Fubini: still soling up the same stuff, but in different order.

1	7	-2	3
0	4	8	-5
3	2	1	0

$$
\begin{array}{ll}
(1+0+3) & (1+7+(-2)+3) \\
+ & (7+4+2) \\
+(-2+8+1) \\
+ & +(0+(-5)+0)
\end{array}
$$

11 Something you may have seen in
Math $1 \mathrm{~A} / \mathrm{B}$ If a series is not absolutely convergent, then rearranging can actually result in different values.

So despite the illustration to the
left, Fubini's The is actually a very non trivial result.
A1 All this is still in the context of $\delta / 5$.
nerve

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

aibrc,d are all constant, ie,

If the region is not a rectangle, can still do both $d y d x$ and dxdy orders, but the bounds ane more involved to interchange $[\S 15.2$, well discuss this next time).

