OVERVIEW OF \$15.1 Also, you perhaps learned how to compute volumes of solids of revolution! Let's begin by revisiting a bit of SVC. If you want the area under y=fix) y=f(x) (1)ta × TI y dx Volume= Area = f(x) dx $\pi(\chi^2)$ dx Total area = add them up and compute Total volume add them up J faxi dy. TXTdy

z=f(x,y)=x+y Area Area dax (x+y) dyx is a constant along each slice!! A i add the slices up: total volof Sol .3 $\int_{-\infty}^{3} \left(\int_{-\infty}^{2} (x + y) \, dy \right) \, dx$ View from abore This is a combination of ideas from (1) and (2) on prev. page.

Namely (2) for the outer integral, (1) for inner. Observe: this depends only on x, just as how the disk slices in 2 depend Let's compute: only on X. $\int \int \left[(x_{+y}) dy dx = \int \left((x_{y} + \frac{1}{2}y_{-1}^{2}) \right]_{y=1}^{2} dx$ $= \left((2x+2) - (x+\frac{1}{2}) \right) dx$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{3}{2} \left(\frac{1}{2} + \frac{3}{2} \right) \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac$ $= \left(\frac{1}{2}x^{2} + \frac{3}{2}x\right)\Big|_{x=1}^{3} = \left(\frac{9}{2} + \frac{9}{2}\right) - \left(\frac{1}{2} + \frac{3}{2}\right)$

Z=X Bu I cont 3 also break up the (x+y)region like this: OX y is a constant along each slice! Total volume: add up the slices (X+n View 21

COMPARISO	N
$\int_{-\infty}^{3} \int_{-\infty}^{2} (x + y) dy dx$	$\int_{1}^{2} \int_{1}^{3} (x+y) dx dy$
=	$= \int_{1}^{2} \left(\frac{1}{2} x^{2} + x y \right) \Big _{x=1}^{3} dy$
$= \left[\begin{array}{c} 1 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$	$= \int_{1}^{2} \left(\frac{q}{z} + 3y\right) - \left(\frac{1}{z} + y\right) dy$
This agreement (7=7) is a manifestation of Fubini's Thm (15.1.10).	$= \int_{1}^{2} 4 + 2y dy = (4y + y^{2}) \bigg _{y=1}^{2}$
"Fubini is to integration as	=(8+4)-(4+1)=[7]
Azirant is to defferentiation.	· ·
	· · · · · · · · · · · · · · · · · · ·

Intuitive explanation of Fubini: still adding up the same stuff, but in different order. $\frac{1}{2} + \frac{7}{2} + \frac{2}{3} + \frac{3}{2} + \frac{3}{$	A Something you may have seen in Math IA/B: If a series is not absolutely convergent, then rearranging can actually result in different values. So despite the illustration to the
$ \begin{array}{l} (1+0+3) \\ + (7+4+2) \\ + (-2+8+1) \end{array} = \\ + (3+2+1+0) \end{array} $	left, Fubini's Thm is actually a very non-trivial result.
+(3+(-5)+0)	All this is still in the context of \$15.1 where $\int_{a}^{b} d$ for yi dydry
	a,b,c,d are all constart, i.e.,

d 7 1/2 rectangle	. .
· · · · · · · · · · · · · · · · · · ·	
× ×	
If the region is not a rectangle, can still	
A new glost a start of the	
do both dydx and dxdy orders,	· · · · · · · · · · · · · · · · · · ·
but the bounds are more involved to	
The formation of the second the	
interchange [§15.2, we'll discuss this	
next time).	